Skip Navigation

Publication Detail

Title: Concentration and type of bioaerosols before and after conventional disinfection and sterilization procedures inside hospital operating rooms.

Authors: Dehghani, Mansooreh; Sorooshian, Armin; Nazmara, Shahrokh; Baghani, Abbas Norouzian; Delikhoon, Mahdieh

Published In Ecotoxicol Environ Saf, (2018 Nov 30)

Abstract: Operating rooms (ORs) in hospitals are sensitive wards because patients can get infections. This work aimed to characterize the type and concentration of bioaerosols in nine ORs of an educational hospital before and after sterilization and disinfection. During 2017, fungal samples were incubated at 25-28 °C for 3-7 days and bacterial samples at 37 °C for 24-48 h. The study results showed that the concentrations of fungi before cleaning procedures (for both of disinfection and sterilization) were limited from 4.83 to 18.40 CFU/m3 and after cleaning procedures ranged from 1.90 to 8.90 CFU/m3. In addition, the concentrations of bacteria before cleaning procedures were limited 14.65-167.40 CFU/m3 and after cleaning procedures ranged from 9.50 to 38.40 CFU/m3. The difference between the mean concentrations of airborne bioaerosols before and after sterilization was significantly different than the suggested value of 30 CFU/m3 (p ≤ 0.05). The bacterial concentration was higher than the recommended value (30 CFU/m3) in 41% of the ORs. The main fungal species identified in the indoor air of ORs (before vs. after sterilization) were A. fumigatus (25.6 vs. 18.3%), A. Niger (11.6 vs. 5.8%), Penicillium spp. (5.5 vs. 3.3%), Alternaria spp. (2.8 vs. 0.7%), Fusarium spp. (9.7 vs. 3.7%), Mucor spp. (15 vs. 12.7%), Cephalotrichum spp. (1.7 vs. 0.8%), A. Flavus (24.6 vs. 18.5%), Cladosporium spp. (2.6 vs. 0.8%), and Trichoderma spp. (0 vs. 0.9%). The growth of biological species even after sterilization and disinfection likely resulted from factors including poor ventilation, sweeping of OR floors, inadequate HVAC filtration, high humidity, and also lack of optimum management of infectious waste after surgery. Designing well-constructed ventilation and air-conditioning systems, replacing HEPA filters, implementing more stringent, frequent, and comprehensive disinfection procedures, and controlling temperature and humidity can help decrease bioaerosols in ORs.

PubMed ID: 30121503 Exiting the NIEHS site

MeSH Terms: Aerosols*; Air Microbiology*; Air Pollutants; Air Pollution, Indoor/analysis*; Bacteria; Disinfection/methods*; Filtration; Fungi; Geography; Hospitals; Humidity; Iran; Operating Rooms*; Temperature; Ventilation

Back
to Top