Skip Navigation

Publication Detail

Title: Hemimetabolous genomes reveal molecular basis of termite eusociality.

Authors: Harrison, Mark C; Jongepier, Evelien; Robertson, Hugh M; Arning, Nicolas; Bitard-Feildel, Tristan; Chao, Hsu; Childers, Christopher P; Dinh, Huyen; Doddapaneni, Harshavardhan; Dugan, Shannon; Gowin, Johannes; Greiner, Carolin; Han, Yi; Hu, Haofu; Hughes, Daniel S T; Huylmans, Ann-Kathrin; Kemena, Carsten; Kremer, Lukas P M; Lee, Sandra L; Lopez-Ezquerra, Alberto; Mallet, Ludovic; Monroy-Kuhn, Jose M; Moser, Annabell; Murali, Shwetha C; Muzny, Donna M; Otani, Saria; Piulachs, Maria-Dolors; Poelchau, Monica; Qu, Jiaxin; Schaub, Florentine; Wada-Katsumata, Ayako; Worley, Kim C; Xie, Qiaolin; Ylla, Guillem; Poulsen, Michael; Gibbs, Richard A; Schal, Coby; Richards, Stephen; Belles, Xavier; Korb, Judith; Bornberg-Bauer, Erich

Published In Nat Ecol Evol, (2018 Mar)

Abstract: Around 150 million years ago, eusocial termites evolved from within the cockroaches, 50 million years before eusocial Hymenoptera, such as bees and ants, appeared. Here, we report the 2-Gb genome of the German cockroach, Blattella germanica, and the 1.3-Gb genome of the drywood termite Cryptotermes secundus. We show evolutionary signatures of termite eusociality by comparing the genomes and transcriptomes of three termites and the cockroach against the background of 16 other eusocial and non-eusocial insects. Dramatic adaptive changes in genes underlying the production and perception of pheromones confirm the importance of chemical communication in the termites. These are accompanied by major changes in gene regulation and the molecular evolution of caste determination. Many of these results parallel molecular mechanisms of eusocial evolution in Hymenoptera. However, the specific solutions are remarkably different, thus revealing a striking case of convergence in one of the major evolutionary transitions in biological complexity.

PubMed ID: 29403074 Exiting the NIEHS site

MeSH Terms: Animals; Biological Evolution; Blattellidae/genetics*; Blattellidae/physiology; Evolution, Molecular*; Genome*; Isoptera/genetics*; Isoptera/physiology; Phylogeny; Social Behavior*

Back
to Top