Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.

Publication Detail

Title: Multivariate left-censored Bayesian model for predicting exposure using multiple chemical predictors.

Authors: Groth, Caroline; Banerjee, Sudipto; Ramachandran, Gurumurthy; Stenzel, Mark R; Stewart, Patricia A

Published In Environmetrics, (2018 Jun)

Abstract: Environmental health exposures to airborne chemicals often originate from chemical mixtures. Environmental health professionals may be interested in assessing exposure to one or more of the chemicals in these mixtures, but often exposure measurement data are not available, either because measurements were not collected/assessed for all exposure scenarios of interest or because some of the measurements were below the analytical methods' limits of detection (i.e. censored). In some cases, based on chemical laws, two or more components may have linear relationships with one another, whether in a single or in multiple mixtures. Although bivariate analyses can be used if the correlation is high, often correlations are low. To serve this need, this paper develops a multivariate framework for assessing exposure using relationships of the chemicals present in these mixtures. This framework accounts for censored measurements in all chemicals, allowing us to develop unbiased exposure estimates. We assessed our model's performance against simpler models at a variety of censoring levels and assessed our model's 95% coverage. We applied our model to assess vapor exposure from measurements of three chemicals in crude oil taken on the Ocean Intervention III during the Deepwater Horizon oil spill response and clean-up.

PubMed ID: 30467454 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top