Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.

Publication Detail

Title: Multivariate spatial meta kriging.

Authors: Guhaniyogi, Rajarshi; Banerjee, Sudipto

Published In Stat Probab Lett, (2019 Jan)

Abstract: This work extends earlier work on spatial meta kriging for the analysis of large multivariate spatial datasets as commonly encountered in environmental and climate sciences. Spatial meta-kriging partitions the data into subsets, analyzes each subset using a Bayesian spatial process model and then obtains approximate posterior inference for the entire dataset by optimally combining the individual posterior distributions from each subset. Importantly, as is often desired in spatial analysis, spatial meta kriging offers posterior predictive inference at arbitrary locations for the outcome as well as the residual spatial surface after accounting for spatially oriented predictors. Our current work explores spatial meta kriging idea to enhance scalability of multivariate spatial Gaussian process model that uses linear model co-regionalization (LMC) to account for the correlation between multiple components. The approach is simple, intuitive and scales multivariate spatial process models to big data effortlessly. A simulation study reveals inferential and predictive accuracy offered by spatial meta kriging on multivariate observations.

PubMed ID: 30662104 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top