Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Identification of Steps in the Pathway of Arsenosugar Biosynthesis.

Authors: Xue, Xi-Mei; Ye, Jun; Raber, Georg; Rosen, Barry P; Francesconi, Kevin; Xiong, Chan; Zhu, Zhe; Rensing, Christopher; Zhu, Yong-Guan

Published In Environ Sci Technol, (2019 01 15)

Abstract: Arsenosugars are arsenic-containing ribosides that play a substantial role in arsenic biogeochemical cycles. Arsenosugars were identified more than 30 years ago, and yet their mechanism of biosynthesis remains unknown. In this study we report identification of the arsS gene from the cyanobacterium Synechocystis sp. PCC 6803 and show that it is involved in arsenosugar biosynthesis. In the Synechocystis sp. PCC 6803 ars operon, arsS is adjacent to the arsM gene that encodes an As(III) S-adenosylmethionine (SAM) methyltransferase. The gene product, ArsS, contains a characteristic CX3CX2C motif which is typical for the radical SAM superfamily. The function of ArsS was identified from a combination of arsS disruption in Synechocystis sp. PCC 6803 and heterologous expression of arsM and arsS in Escherichia coli. Both genes are necessary, indicating a multistep pathway of arsenosugar biosynthesis. In addition, we demonstrate that ArsS orthologs from three other freshwater cyanobacteria and one picocyanobacterium are involved in arsenosugar biosynthesis in those microbes. This study represents the identification of the first two steps in the pathway of arsenosugar biosynthesis. Our discovery expands the catalytic repertoire of the diverse radical SAM enzyme superfamily and provides a basis for studying the biogeochemistry of complex organoarsenicals.

PubMed ID: 30525501 Exiting the NIEHS site

MeSH Terms: Arsenates; Arsenic*; Monosaccharides; Synechocystis*

to Top