Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Application of differential mobility-mass spectrometry for untargeted human plasma metabolomic analysis.

Authors: Wernisch, Stefanie; Pennathur, Subramaniam

Published In Anal Bioanal Chem, (2019 Sep)

Abstract: Differential mobility spectrometry (DMS) has been gaining popularity in small molecule analysis over the last few years due to its selectivity towards a variety of isomeric compounds. While DMS has been utilized in targeted liquid chromatography-mass spectrometry (LC-MS), its use in untargeted discovery workflows has not been systematically explored. In this contribution, we propose a novel workflow for untargeted metabolomics based solely on DMS separation in a clinically relevant chronic kidney disease (CKD) patient population. We analyzed ten plasma samples from early- and late-stage CKD patients. Peak finding, alignment, and filtering steps performed on the DMS-MS data yielded a list of 881 metabolic features (unique mass-to-charge and migration time combinations). Differential analysis by CKD patient group revealed three main features of interest. One of them was putatively identified as bilirubin based on high-accuracy MS data and comparison of its optimum compensation voltage (COV) with that of an authentic standard. The DMS-MS analysis was four times faster than a typical HPLC-MS run, which suggests a potential for the utilization of this technique in screening studies. However, its lower separation efficiency and reduced signal intensity make it less suitable for low-abundant features. Fewer features were detected by the DMS-based platform compared with an HPLC-MS-based approach, but importantly, the two approaches resulted in different features. This indicates a high degree of orthogonality between HPLC- and DMS-based approaches and demonstrates the need for larger studies comparing the two techniques. The workflow described here can be adapted for other areas of metabolomics and has a value as a prescreening method to develop semi-targeted workflows and as a faster alternative to HPLC in large biomedical studies.

PubMed ID: 30941479 Exiting the NIEHS site

MeSH Terms: Chromatography, High Pressure Liquid/methods; Cohort Studies; Glomerular Filtration Rate; Humans; Ion Mobility Spectrometry/methods*; Kidney Failure, Chronic/blood*; Kidney Failure, Chronic/physiopathology; Mass Spectrometry/methods*; Metabolomics*; Pilot Projects

Back
to Top