Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Spatiotemporal Imputation of MAIAC AOD Using Deep Learning with Downscaling.

Authors: Li, Lianfa; Franklin, Meredith; Girguis, Mariam; Lurmann, Frederick; Wu, Jun; Pavlovic, Nathan; Breton, Carrie; Gilliland, Frank; Habre, Rima

Published In Remote Sens Environ, (2020 Feb)

Abstract: Aerosols have adverse health effects and play a significant role in the climate as well. The Multiangle Implementation of Atmospheric Correction (MAIAC) provides Aerosol Optical Depth (AOD) at high temporal (daily) and spatial (1 km) resolution, making it particularly useful to infer and characterize spatiotemporal variability of aerosols at a fine spatial scale for exposure assessment and health studies. However, clouds and conditions of high surface reflectance result in a significant proportion of missing MAIAC AOD. To fill these gaps, we present an imputation approach using deep learning with downscaling. Using a baseline autoencoder, we leverage residual connections in deep neural networks to boost learning and parameter sharing to reduce overfitting, and conduct bagging to reduce error variance in the imputations. Downscaled through a similar auto-encoder based deep residual network, Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA-2) GMI Replay Simulation (M2GMI) data were introduced to the network as an important gap-filling feature that varies in space to be used for missingness imputations. Imputing weekly MAIAC AOD from 2000 to 2016 over California, a state with considerable geographic heterogeneity, our full (non-full) residual network achieved mean R2 = 0.94 (0.86) [RMSE = 0.007 (0.01)] in an independent test, showing considerably better performance than a regular neural network or non-linear generalized additive model (mean R2 = 0.78-0.81; mean RMSE = 0.013-0.015). The adjusted imputed as well as combined imputed and observed MAIAC AOD showed strong correlation with Aerosol Robotic Network (AERONET) AOD (R = 0.83; R2 = 0.69, RMSE = 0.04). Our results show that we can generate reliable imputations of missing AOD through a deep learning approach, having important downstream air quality modeling applications.

PubMed ID: 32158056 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

to Top