Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Polybrominated Diphenylethers (PBDEs) in ambient air samples at the electronic waste (e-waste) reclamation site.

Authors: Ghimire, Ajit; Dela Cruz, Albert Leo N; Wong, Roberto; Navasumrit, Panida; Cormier, Stephania; Lomnicki, Slawomir M

Published In Waste Dispos Sustain Energy, (2019)

Abstract: Polybrominated Diphenylethers (PBDEs) were used as flame-retardants in various building materials, plastic and other polymers, airplanes, electronics etc. All or some of their congeners have been already banned in many countries, due to their persistency and adverse health effects. In this study, we are focusing on the e-wastes as a source of emission of PBDEs in ambient air during reclamation processes. The ambient air particulate matter (PM) samples were collected at and near e-waste reclamation site in Bangkok, Thailand. Results showed the presence of various homologues viz: tri, tetra, penta, hexa, and hepta-PBDEs on both PM2.5 and Total Suspended Particle (TSP) samples. The comparison of samples as a function of distance from reclamation site indicated elevated levels of PBDEs in the close proximity to e-waste site. Interestingly, a shift in the congener pattern was observed with lower brominated PBDEs being more prevalent on nearby off-site samples as compared to the PM collected at the e-waste site. The total penta-PBDEs concentration is about double on e-waste site PM2.5 compared to control site samples. For TSP, tetra, penta, and hepta-PBDEs congeners are at higher concentrations at e-waste sites and its vicinity compared to reference sites. Overall, a clear trend can be observed indicating a debromination of PBDEs to more toxic tri and tetra congeners during reclamation process and PBDEs are being translocated from treated materials to ambient air PM. BDE 30 congener is identified as a specific marker of thermal reclamation processes of e-wastes as a most stable degradation product. This work indicates potential hazards related to the reclamation of e-wastes and remediation of sites containing PBDEs. In particular, thermal treatment methods can lead to congener transformation and increased emissions of more toxic lower-brominated congeners.

PubMed ID: 33134850 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top