Skip Navigation

Publication Detail

Title: Removal of urban-use insecticides in a large-scale constructed wetland.

Authors: Cryder, Zachary; Wolf, Douglas; Carlan, Craig; Gan, Jay

Published In Environ Pollut, (2021 Jan 01)

Abstract: Water treatment and reuse initiatives are essential to combat declining water supplies in a changing climate, especially in arid and semi-arid regions. Pollution of water resources intensifies the search for strategies to provide water for potable and non-potable reuse that mitigates detrimental ecological and human health effects. Fipronil and synthetic pyrethroids are common urban-use insecticides that exert aquatic toxicity at trace levels and have been often found in urban surface streams. In this study, samples were collected from the 182 ha Prado Wetlands in Southern California for seven months to assess the occurrence of fipronil and its degradation products as well as pyrethroids (bifenthrin and cyfluthrin) in water, sediment, and plants in a 4.45 ha vegetated surface flow constructed wetland (CW). Concentration-based removal values and changes in mass flux were calculated to determine the efficacy of CW treatment. Observed water concentrations were further used to calculate toxic units for the invertebrates Hyalella azteca and Chironomus dilutus. Pesticide concentrations in water, sediment, and plant samples consistently decreased during passage through the CW at all time points. Removal values for fipronil desulfinyl, fipronil sulfide, fipronil, fipronil sulfone, bifenthrin, and cyfluthrin were 100%, 99.7-100%, 57.8-88.1%, 75.6-100%, 74.7-100%, and 36.6-82.2%, respectively, and there was a general net deposition of pesticides into CW compartments. Toxic unit values decreased in every instance for both aquatic invertebrates. Settling of contaminated particles, adsorption to sediment, plant uptake or adsorption, and subsequent degradation contributed to the effective removal of these urban-use insecticides, which highlights the potential of CWs for protecting urban water quality.

PubMed ID: 33038631 Exiting the NIEHS site

MeSH Terms: Amphipoda*; Animals; Geologic Sediments; Humans; Insecticides*/analysis; Pyrethrins*; Water Pollutants, Chemical*/analysis; Wetlands

Back
to Top