Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Small-sample inference for cluster-based outcome-dependent sampling schemes in resource-limited settings: Investigating low birthweight in Rwanda.

Authors: Sauer, Sara; Hedt-Gauthier, Bethany; Rivera-Rodriguez, Claudia; Haneuse, Sebastien

Published In Biometrics, (2021 Jan 14)

Abstract: The neonatal mortality rate in Rwanda remains above the United Nations Sustainable Development Goal 3 target of 12 deaths per 1000 live births. As part of a larger effort to reduce preventable neonatal deaths in the country, we conducted a study to examine risk factors for low birthweight. The data were collected via a cost-efficient cluster-based outcome-dependent sampling (ODS) scheme wherein clusters of individuals (health centers) were selected on the basis of, in part, the outcome rate of the individuals. For a given data set collected via a cluster-based ODS scheme, estimation for a marginal model may proceed via inverse-probability-weighted generalized estimating equations, where the cluster-specific weights are the inverse probability of the health center's inclusion in the sample. In this paper, we provide a detailed treatment of the asymptotic properties of this estimator, together with an explicit expression for the asymptotic variance and a corresponding estimator. Furthermore, motivated by the study we conducted in Rwanda, we propose a number of small-sample bias corrections to both the point estimates and the standard error estimates. Through simulation, we show that applying these corrections when the number of clusters is small generally reduces the bias in the point estimates, and results in closer to nominal coverage. The proposed methods are applied to data from 18 health centers and 1 district hospital in Rwanda.

PubMed ID: 33444459 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

to Top