Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Stoichiometric controls of mercury dilution by growth.

Authors: Karimi, Roxanne; Chen, Celia Y; Pickhardt, Paul C; Fisher, Nicholas S; Folt, Carol L

Published In Proc Natl Acad Sci U S A, (2007 May 01)

Abstract: Rapid growth could significantly reduce methylmercury (MeHg) concentrations in aquatic organisms by causing a greater than proportional gain in biomass relative to MeHg (somatic growth dilution). We hypothesized that rapid growth from the consumption of high-quality algae, defined by algal nutrient stoichiometry, reduces MeHg concentrations in zooplankton, a major source of MeHg for lake fish. Using a MeHg radiotracer, we measured changes in MeHg concentrations, growth and ingestion rates in juvenile Daphnia pulex fed either high (C:P = 139) or low-quality (C:P = 1317) algae (Ankistrodesmus falcatus) for 5 d. We estimated Daphnia steady-state MeHg concentrations, using a biokinetic model parameterized with experimental rates. Daphnia MeHg assimilation efficiencies (approximately 95%) and release rates (0.04 d(-1)) were unaffected by algal nutrient quality. However, Daphnia growth rate was 3.5 times greater when fed high-quality algae, resulting in pronounced somatic growth dilution. Steady-state MeHg concentrations in Daphnia that consumed high-quality algae were one-third those of Daphnia that consumed low-quality algae due to higher growth and slightly lower ingestion rates. Our findings show that rapid growth from high-quality food consumption can significantly reduce the accumulation and trophic transfer of MeHg in freshwater food webs.

PubMed ID: 17456601 Exiting the NIEHS site

MeSH Terms: Animals; Chlorophyta/drug effects; Chlorophyta/growth & development; Daphnia/drug effects; Daphnia/growth & development; Daphnia/metabolism; Indicator Dilution Techniques; Methylmercury Compounds/pharmacology*; Phytoplankton/drug effects; Phytoplankton/growth & development

Back
to Top