Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Sensitization of olfactory guanylyl cyclase to a specific imprinted odorant in coho salmon.

Authors: Dittman, A H; Quinn, T P; Nevitt, G A; Hacker, B; Storm, D R

Published In Neuron, (1997 Aug)

Abstract: The role of cGMP in olfactory signaling is not fully understood, but it is believed to play a modulatory role in intracellular signaling in vertebrate olfactory receptor neurons (ORNs). Here, we present evidence that cGMP in ORNs may play an important role in recognition of biologically relevant odors and olfactory learning. Specifically, we investigated the cellular mechanisms underlying olfactory imprinting in salmon. Salmon learn odors associated with their natal site as juveniles and later use these odors to guide their homing migration. This imprinting is believed to involve sensitization of the peripheral olfactory system to specific homestream odorants. We imprinted juvenile salmon to the odorant beta-phenylethyl alcohol (PEA) and examined the sensitivity of olfactory adenylyl and guanylyl cyclases to PEA during development. Stimulation of guanylyl cyclase activity by PEA was significantly greater in olfactory cilia isolated from PEA-imprinted salmon compared with PEA-naive fish only at the time of the homing migration, 2 years after PEA exposure. These results suggest that sensitization of olfactory guanylyl cyclase may play an important role in olfactory imprinting by salmon.

PubMed ID: 9292727 Exiting the NIEHS site

MeSH Terms: Animals; Guanylate Cyclase/physiology*; Imprinting (Psychology)/physiology*; Odorants*; Olfactory Pathways/enzymology*; Oncorhynchus kisutch; Sensitivity and Specificity

Back
to Top