Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Understanding the chemical properties of macerals and minerals in coal and its potential application for occupational lung disease prevention.

Authors: Huang, Xi; Finkelman, Robert B

Published In J Toxicol Environ Health B Crit Rev, (2008 Jan)

Abstract: Recent increases in oil price further strengthen the argument that coal and coal products will play an increasingly important role in fulfilling the energy needs of our society. Coal is an aggregate of heterogeneous substances composed of organic (macerals) and inorganic (minerals) materials. The objective of this review was to assess whether some chemical parameters in coal play a role in producing environmental health problems. Basic properties of coal--such as chemical forms of the organic materials, structure, compositions of minerals--vary from one coal mine region to another as well as from coals of different ranks. Most importantly, changes in chemical properties of coals due to exposure to air and humidity after mining--a dynamic process--significantly affect toxicity attributed to coal and environmental fate. Although coal is an extremely complex and heterogeneous material, the fundamental properties of coal responsible for environmental and adverse health problems are probably related to the same inducing components of coal. For instance, oxidation of pyrite (FeS2) in the coal forms iron sulfate and sulfuric acid, which produces occupational lung diseases (e.g., pneumoconiosis) and other environmental problems (e.g., acid mine drainage and acid rain). Calcite (CaCO3) contained in certain coals alters the end products of pyrite oxidation, which may make these coals less toxic to human inhalation and less hazardous to environmental pollution. Finally, knowledge gained on understanding of the chemical properties of coals is illustrated to apply for prediction of toxicity due to coal possibly before large-scale mining and prevention of occupational lung disease during mining.

PubMed ID: 18176887 Exiting the NIEHS site

MeSH Terms: Coal/adverse effects*; Coal/analysis*; Humans; Lung Diseases/chemically induced*; Lung Diseases/prevention & control*; Minerals/chemistry*; Occupational Exposure/adverse effects; Occupational Exposure/prevention & control*

Back
to Top