Skip Navigation

Person Details: David L. Sedlak

Superfund Research Program

David L. Sedlak

University of California-Berkeley
Civil and Environmental Engineering
657 Davis Hall
Berkeley, California 94720-1710
Phone: 510-643-0256
Fax: 510-642-7483


Research Briefs


Hazardous Waste Sites

Jacksonville Naval Air Station

  • University of California-Berkeley: Oxidative Remediation of Superfund Contaminants

San Fernando Valley

  • University of California-Berkeley: Oxidative Remediation of Superfund Contaminants



  • Kim T, Lee D, Walsh G, Lee C, Sedlak DL. 2024. Unwanted loss of volatile organic compounds (VOCs) during in situ chemical oxidation sample preservation: Mechanisms and solutions. J Hazard Mater Lett 5:100102. doi:10.1016/j.hazl.2024.100102
  • McGachy L, Sedlak DL. 2024. From theory to practice: Leveraging chemical principles to improve the performance of peroxydisulfate-based in situ chemical oxidation of organic contaminants. Environ Sci Technol 58(1):17-32. doi:10.1021/acs.est.3c07409 PMID:38110187 PMCID:10785823


  • Duan Y, Jiang W, Sedlak DL. 2023. Surface processes control the fate of reactive oxidants generated by electrochemical activation of hydrogen peroxide on stainless-steel electrodes. Environ Sci Technol doi:10.1021/acs.est.2c08404 PMID:36926844
  • Kim T, Sedlak DL. 2023. Mineralization of a fully halogenated organic compound by persulfate under conditions relevant to in situ reduction and oxidation: reduction of hexachloroethane by ethanol addition followed by oxidation. Environ Sci Technol 57(36):13691-13698. doi:10.1021/acs.est.3c03489 PMID:37640476 PMCID:PMC10501115
  • Lammers LN, Duan Y, Anaya L, Koishi A, Lopez R, Delima R, Jassby D, Sedlak DL. 2023. Electrolytic sulfuric acid production with carbon mineralization for permanent carbon dioxide removal. ACS Sustain Chem Eng 11(12):4800-4812. doi:10.1021/acssuschemeng.2c07441 PMID:37008181 PMCID:PMC1005235


  • Ocasio D, Sedlak DL. 2022. Membrane-assisted electrochlorination for zero-chemical-input point-of-use drinking water disinfection. ACS ES&T Eng 9:doi:10.1021/acsestengg.2c00116
  • Yi S, Harding-Marjanovic KC, Houtz EF, Antell E, Olivares CI, Nichiporuk RV, Lavarone AT, Zhuang W, Field JA, Sedlak DL, Alvarez-Cohen L. 2022. Biotransformation of 6:2 fluorotelomer thioether amido sulfonate in aqueous film-forming foams under nitrate-reducing conditions. Environ Sci Technol 56(15):10646-10655. doi:10.1021/acs.est.2c00063 PMID:35861429


  • Duan Y, Sedlak DL. 2021. An electrochemical advanced oxidation process for the treatment of urban stormwater. Water Res. X 13(12):100127. doi:10.1016/j.wroa.2021.100127 PMID:34927040 PMCID:PMC8649961
  • Marron EL, Van Buren J, Cuthbertson AA, Darby E, von Gunten U, Sedlak DL. 2021. Reactions of a,b-unsaturated carbonyls with free chlorine, free bromine, and combined chlorine. Environ Sci Technol 55:3305-3312. doi:10.1021/acs.est.0c07660 PMID:33565865
  • Van Buren J, Cuthbertson AA, Ocasio D, Sedlak DL. 2021. Ubiquitous production of organosulfates during treatment of organic contaminants with sulfate radicals. Environ Sci Technol Lett 8:574-580. doi:10.1021/acs.estlett.1c00316


  • Marron EL, Prasse C, Van Buren J, Sedlak DL. 2020. Formation and fate of carbonyls in potable water reuse systems. Environ Sci Technol 54:10895-10903. doi:10.1021/acs.est.0c02793 PMID:32833432
  • Prasse C, von Gunten U, Sedlak DL. 2020. Chlorination of phenols revisited: unexpected formation of alpha, beta-unsaturated C4 dicarbonyl ring cleavage products. Environ Sci Technol 54(2):826-834. doi:10.1021/acs.est.9b04926
  • Van Buren J, Prasse C, Marron EL, Skeel B, Sedlak DL. 2020. Ring-cleavage products produced during the initial phase of oxidative treatment of alkyl-substituted aromatic compounds. Environ Sci Technol 54:8352-8361. doi:10.1021/acs.est.0c00432 PMID:32519538 PMCID:PMC7685676


  • Yang X, Duan Y, Wang J, Wang H, Liu H, Sedlak DL. 2019. Impact of Peroxymonocarbonate on the transformation of organic contaminants during hydrogen peroxide in situ chemical oxidation. Environ Sci Technol Lett 6:781-786. doi:10.1021/acs.estlett.9b00682




  • Barazesh JM, Prasse C, Sedlak DL. 2016. Electrochemical transformation of trace organic contaminants in the presence of halide and carbonate ions. Environ Sci Technol 50(18):10143-10152. doi:10.1021/acs.est.6b02232 PMID:27599127 PMCID:PMC5032050
  • Harding KC, Yi S, Weathers T, Sharp JO, Sedlak DL, Alvarez-Cohen L. 2016. Effects of aqueous film-forming foams (AFFFs) on trichloroethene (TCE) dechlorination by a Dehalococcoides mccartyi-containing microbial community. Environ Sci Technol 50(7):3352-3361. doi:10.1021/acs.est.5b04773 PMID:26894610
  • Liu H, Bruton TA, Li W, Van Buren J, Doyle FM, Prasse C, Sedlak DL. 2016. Oxidation of benzene by persulfate in the presence of Fe(III)- and Mn(IV)-containing oxides: stoichiometric efficiency and transformation products. Environ Sci Technol 50(2):890-898. doi:10.1021/acs.est.5b04815 PMID:26687229
  • Sun B, Ma J, Sedlak DL. 2016. Chemisorption of perfluorooctanoic acid on powdered activated carbon initiated by persulfate in aqueous solution. Environ Sci Technol 50(14):7618-7624. doi:10.1021/acs.est.6b00411 PMID:27336204



  • Liu H, Bruton TA, Doyle FM, Sedlak DL. 2014. In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials. Environ Sci Technol 48(17):10330-10336. doi:10.1021/es502056d PMID:25133603 PMCID:PMC4151705


  • Gui M, Smuleac V, Ormsbee LE, Sedlak DL, Bhattacharyya D. 2012. Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water. Journal of Nanoparticle Research 14:861. doi:10.1007/s11051-012-0861-1
  • Pham AL, Doyle FM, Sedlak DL. 2012. Inhibitory effect of dissolved silica on H2O2 decomposition by iron(III) and manganese(IV) oxides: implications for H2O2-based in situ chemical oxidation. Environ Sci Technol 46:1055-1062. doi:10.1021/es203612d PMID:22129132 PMCID:PMC3262894
  • Pham AL, Doyle FM, Sedlak DL. 2012. Kinetics and efficiency of H2O2 activation by iron-containing minerals and aquifer materials. Water Res 46(19):6454-6462. doi:10.1016/j.watres.2012.09.020 PMID:23047055 PMCID:PMC3891917
  • Pham AL, Sedlak DL, Doyle FM. 2012. Dissolution of mesoporous silica supports in aqueous solutions: Implications for mesoporous silica-based water treatment processes. Appl Catal B 126:258-264. doi:10.1016/j.apcatb.2012.07.018 PMID:23055573 PMCID:PMC3465675


  • Ela WP, Sedlak DL, Barlaz MA, Henry HF, Muir DG, Swackhamer DL, Weber EJ, Arnold RG, Ferguson PL, Field JA, Furlong ET, Giesy JP, Halden RU, Henry T, Hites RA, Hornbuckle KC, Howard PH, Luthy RG, Meyer AK, Saez AE, vom Saal FS, Vulpe CD, Wiesner MR. 2011. Toward identifying the next generation of superfund and hazardous waste site contaminants. Environ Health Perspect 119(1):6-10. doi:10.1289/ehp.1002497 PMID:21205582 PMCID:PMC3018501
  • Remucal CK, Sedlak DL. 2011. The Role of Iron Coordination in the Production of Reactive Oxidants from Ferrous Iron Oxidation by Oxygen and Hydrogen Peroxide. In: Aquatic redox chemistry. American Chemical Society, Washington, DC.


  • Pham AL, Sedlak DL, Doyle FM. 2010. Production of oxidizing intermediates during corrosion of iron: implications for remediation of contaminants from mineral and metal processing. ECS Trans 28(6):117-127. doi:10.1149/1.3367907



  • Keenan CR, Sedlak DL. 2008. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen. Environ Sci Technol 42(4):1262-1267. doi:10.1021/es7025664 PMID:18351103
  • Keenan CR, Sedlak DL. 2008. Ligand-enhanced reactive oxidant generation by nanoparticulate zerovalent Iron and oxygen. Environ Sci Technol 42(18):69366941. doi:10.1021/es801438f PMID:18853812
  • Lee C, Keenan CR, Sedlak DL. 2008. Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen. Environ Sci Technol 42(13):4921-6. doi:10.1021/es800317j PMID:18678027
  • Lee C, Kim J, Lee W, Nelson KL, Yoon J, Sedlak DL. 2008. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 42(13):4927-33. doi:10.1021/es800408u PMID:18678028
  • Lee C, Sedlak DL. 2008. Enhanced formation of oxidants from bimetallic nickel-iron nanoparticles in the presence of oxygen. Environ Sci Technol 42(22):8528-8533. PMID:19068843


  • Mitch WA, Sharp JO, Rhodes Trussell R, Valentine RL, Alvarez-Cohen L, Sedlak DL. 2003. N-nitrosodimethylamine (NDMA) as a drinking water contaminant: a review. Environ Eng Sci 20(5):389-404.
to Top