Skip Navigation

University of California-San Diego: Dataset Details, ID=E-GEOD-58680

Maintenance notice: We are currently addressing issues with broken links due to recent major website changes. We apologize for any inconvenience and appreciate your patience. Please contact brittany.trottier@niehs.nih.gov for assistance.

Superfund Research Program

Detection and Models of Toxicant Exposure

Center Director: Robert H. Tukey
Grant Number: P42ES010337
Funding Period: 2000-2023
View this project in the NIH Research Portfolio Online Reporting Tools (RePORT)

Program Links

Connect with the Grant Recipients

Visit the grantee's eNewsletter page Visit the grantee's Instagram page Visit the grantee's Facebook page

Title: Super-Enhancer-mediated Control of Liver Fibrosis by BET Bromodomain Proteins

Accession Number: E-GEOD-58680

Link to Dataset: http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-58680/

Repository: ArrayExpress

Data Type(s): Gene Expression

Experiment Type(s): ChIP-seq

Organism(s): Homo sapiens

Summary: Here, we investigate the role of enhancers in myofibroblasts, a cell type that dominates the pathogenesis and progression of tissue fibrosis. We reveal that bromodomain and extra-terminal family members (BETs), an important group of epigenetic readers, are critical for super-enhancer-mediated pro-fibrotic gene expression in hepatic stellate cells (HSCs, lipid-containing liver-specific pericytes), upon activation during liver fibrogenesis give rise to myofibroblasts2-4. We observe significantly enriched localization of BETs to hundreds of super-enhancers associated with genes involved in multiple pro-fibrotic pathways. This unique loading pattern consequentially serves as a molecular mechanism by which BETs modulate pro-fibrotic gene expression in myofibroblasts. Strikingly, suppression of BET-enhancer interaction using small-molecule inhibitors such as JQ1 dramatically blocks activation of HSCs into myofibroblasts and significantly compromises the proliferation of activated HSCs. Identification of BRD2, BRD3, BRD4, PolII, PolIIs2p and PolIIs5p binding sites in human stellate LX2 cells that were treated with DMSO (0.1 ) or JQ1 (500nM) for 16 hrs.

Publication(s) associated with this dataset:
Back
to Top