Superfund Research Program
Title: A master cistromic circuit governing hepatic fibrogenesis [ChIP-seq]
Accession Number: GSE38103
Link to Dataset: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE38103
Repository: Gene Expression Omnibus (GEO)
Data Type(s): Gene Expression
Experiment Type(s): Genome binding/occupancy profiling by high throughput sequencing
Organism(s): Homo sapiens
Summary: Liver fibrosis is a reversible wound-healing response to liver injury and hepatic stellate cells (HSCs) are central cellular players that mediate hepatic fibrogenesis. However, the molecular mechanisms that govern this process remain unclear. Here, we reveal a novel cistromic circuit in HSCs comprising the vitamin D receptor (VDR) and SMAD transcription factors that restrains the intensity of hepatic fibrogenesis. Ligand-activated VDR suppresses TGFB1-induced pro-fibrotic gene expression in HSCs. Administration of a vitamin D analogue, calcipotriol, diminishes the fibrotic response in a mouse model of liver fibrosis, while VDR knockout mice spontaneous develop extensive hepatic fibrosis by age 6 months. Using ChIP-Seq, we find that the anti-fibrotic properties of VDR are due to crosstalk with SMAD, mediated by their co-occupancy of DNA-binding sites on pro-fibrotic genes. Specifically, SMAD binding potentiates local chromatin accessibility to enhance VDR recruitment at the same cis-regulatory elements, which reciprocally antagonizes the interaction between SMAD3 and chromatin and limits the assembly of transcriptional activation complexes at fibrotic genes, a process that is enhanced by the presence of VDR agonists. These results not only establish this coordinated VDR/SMAD cistromic circuit as a master regulator of hepatic fibrogenesis, but also support VDR as a potential drug target to ameliorate liver fibrosis.
Publication(s) associated with this dataset:- Ding N, Yu RT, Subramaniam N, Sherman MH, Wilson C, Rao R, Leblanc M, Coulter S, He M, Scott C, Lau SL, Atkins AR, Barish GD, Gunton JE, Liddle C, Downes M, Evans RM. 2013. A vitamin D receptor / SMAD genomic circuit gates hepatic fibrotic response. Cell 153(3):601-613. doi:10.1016/j.cell.2013.03.028 PMID:23622244 PMCID:PMC3673534
- University of California-San Diego: Toxicogenomic Analysis of Nuclear Xenobiotic Receptors