Skip Navigation

Research Briefs By Category: Fate and Transport

Superfund Research Program

  • 361 - Model Predicts PFAS Buildup in Wild Animals -- Sunderland
    Release Date: 01/08/2025

    Researchers funded by the NIEHS Superfund Research Program (SRP) developed a new model that predicts how PFAS move and build up within food webs. The model lays the groundwork for screening the thousands of PFAS compounds that could potentially pose a risk for ecological or human health.

  • 352 - Tracking Mercury Conversion and Distribution in Aquatic Environments -- Hsu-Kim
    Release Date: 04/03/2024

    NIEHS Superfund Research Program (SRP)-funded researchers, led by Heileen Hsu-Kim, Ph.D., of the Duke University SRP Center, provided insight into how and at what timescale mercury changes within a wetland ecosystem. They found mercury from different sources is converted into other mercury forms that eventually have similar properties. This finding can inform environmental management or pollution control strategies.

  • 348 - Environmentally Persistent Free Radicals, PAHs Interact to Increase Toxicity of Particulate Mixtures -- Lomnicki
    Release Date: 12/13/2023

    Toxic air pollutants called environmentally persistent free radicals (EPFRs) may react with certain polycyclic aromatic hydrocarbons (PAHs) on the surface of airborne particles to form more toxic chemicals, according to researchers funded by the NIEHS Superfund Research Program (SRP). The study, led by Slawomir Lomnicki, Ph.D., of the Louisiana State University SRP Center, demonstrated that interactions between components of fine particulate matter mixtures may enhance their overall toxicity.

  • 330 - Study Sheds Light on Breakdown Products of PCBs in the Environment -- Hornbuckle
    Release Date: 06/01/2022

    NIEHS Superfund Research program (SRP) grantees discovered toxic breakdown products of polychlorinated biphenyls (PCBs) in contaminated sediments at proportionally higher levels than found in commercial PCB mixtures. According to the team, these findings point to environmental processes, such as metabolism by animals, plants, or bacteria, in generating the harmful chemicals.

  • 328 - Sampling Device May Predict Methylmercury Accumulation in Wetlands -- Hsu-Kim
    Release Date: 04/06/2022

    NIEHS Superfund Research Program (SRP)-funded researchers, led by Heileen Hsu-Kim, Ph.D., of the Duke University SRP Center, showed that a small plastic sampling device can efficiently predict the potential for methylmercury — an environmental contaminant — to form in freshwater wetlands and to accumulate in organisms living there.

  • 319 - Analyzing Chemicals and Genes Yields Novel Insight into PAH Behavior -- Simonich
    Release Date: 07/07/2021

    A new NIEHS Superfund Research Program (SRP)-funded study revealed how polycyclic aromatic hydrocarbons (PAHs) breakdown and transform in the presence of ultraviolet A (UVA) light and titanium dioxide nanoparticle pollutants. Their findings have important implications for PAH cleanup, which may not consider how PAHs transform in diverse environments.

  • 307 - Clay Layers May Worsen Arsenic Contamination -- van Geen
    Release Date: 07/08/2020

    Layers of clay are widely thought to protect groundwater aquifers from above-ground contaminants. But according to a new NIEHS Superfund Research Program (SRP) study, these clay layers may play a role in increasing groundwater arsenic contamination.

Back
to Top
Last Reviewed: March 17, 2025