Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Research Briefs by Year: 2022

Superfund Research Program

  • 333 - Combining Arsenic Data Across Populations Sheds Light on Exposure Sources -- van Geen, Cardenas, Lewis
    Release Date: 09/07/2022

    By combining data across three different populations, NIEHS Superfund Research Program (SRP) researchers were able to better characterize sources of arsenic exposure that should be included in risk assessments. The study was a collaboration among the University of California (UC), Berkeley, University of New Mexico (UNM), and Columbia University SRP centers.

  • 332 - Improving How Microbes Break Down PFAS -- Men
    Release Date: 08/03/2022

    NIEHS Superfund Research Program (SRP) grantees demonstrated a method to break down per- and polyfluoroalkyl substances (PFAS) into smaller, non-toxic molecules. Led by Yujie Men, Ph.D., of the University of California, Riverside, the team also showed that some types of PFAS can be more easily degraded than others.

  • 331 - Emerging PFAS Can Cause Changes in Gene Expression and Lipid Accumulation in Human Liver Cells -- Slitt
    Release Date: 07/06/2022

    New types of per- and polyfluoroalkyl substances (PFAS) can induce significant increases in gene expression and lipid accumulation in human liver cells at lower concentrations compared to PFAS no longer in use, according to researchers funded by the NIEHS Superfund Research Program (SRP).

  • 330 - Study Sheds Light on Breakdown Products of PCBs in the Environment -- Hornbuckle
    Release Date: 06/01/2022

    NIEHS Superfund Research program (SRP) grantees discovered toxic breakdown products of polychlorinated biphenyls (PCBs) in contaminated sediments at proportionally higher levels than found in commercial PCB mixtures. According to the team, these findings point to environmental processes, such as metabolism by animals, plants, or bacteria, in generating the harmful chemicals.

  • 329 - Protein Provides Insight into Respiratory Toxicity of Cadmium -- Antony
    Release Date: 05/04/2022

    A protein called fibrinogen can be an indicator of cadmium exposure in people with chronic obstructive pulmonary disease (COPD), according to a study led by Veena Antony, M.D., director of the NIEHS Superfund Research Program (SRP) Center at the University of Alabama, Birmingham. COPD stems from thickening of airways in the lungs, resulting in shortness of breath and persistent coughing.

  • 328 - Sampling Device May Predict Methylmercury Accumulation in Wetlands -- Hsu-Kim
    Release Date: 04/06/2022

    NIEHS Superfund Research Program (SRP)-funded researchers, led by Heileen Hsu-Kim, Ph.D., of the Duke University SRP Center, showed that a small plastic sampling device can efficiently predict the potential for methylmercury — an environmental contaminant — to form in freshwater wetlands and to accumulate in organisms living there.

  • 327 - Leveraging Machine Learning to Predict Toxicity -- Gu
    Release Date: 03/02/2022

    NIEHS Superfund Research Program (SRP) grantees developed a new computational approach to predict how hazardous substances may affect health based on key changes in cells. Led by April Z. Gu, Ph.D., of the Northeastern University Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) SRP Center, researchers used machine learning and advanced algorithms to link biological changes from high throughput cell studies with health outcomes observed in animal studies.

  • 326 - New Technique Yields Promising Results for Uranium Removal in the Field -- Boxley, Maier
    Release Date: 02/02/2022

    A technology developed by NIEHS-funded Superfund Research Program (SRP) researchers may remove uranium and other heavy metals from groundwater near abandoned mines. Small business GlycoSurf, LLC worked with partners at the University of Arizona SRP Center to determine the best environmental conditions for effectively removing uranium from contaminated water.

  • 325 - Biosensor Helps Characterize Contaminants and Health Risks Following Disasters -- Unger, Knap
    Release Date: 01/05/2022

    A sophisticated biosensor may provide information about contaminant distribution in the aftermath of natural disasters, according to an NIEHS Superfund Research Program (SRP)-funded study. Led by former Texas A&M University (TAMU) SRP Center trainee Krisa Camargo and Michael Unger, Ph.D., from the Virginia Institute of Marine Sciences, the team demonstrated this type of tool is useful for quickly characterizing and prioritizing environmental samples for further analysis, particularly in the context of disaster research response.

Back
to Top