Skip Navigation

Technology Profiles

Superfund Research Program

Below is a list of recent SRP grant recipient Technology Profiles featured in the quarterly Science Digest

NIEHS does not maintain articles more than three years. Older articles are stored on our archive site. Click this link to go to the NIEHS website archive for Technology Profiles. In the archive, you may encounter broken links, images, or videos in some articles.

Grey biochar particle with attached bacteria
University of Iowa: Biochar-Enhanced Bacteria
March 2024

Researchers at the University of Iowa are investigating how biochar, the carbon-rich byproduct of burning plant matter, can enhance the performance of a type of bacteria - called organohalide-respiring bacteria (OHRB) - commonly used to break down halogenated pollutants.

MOIRA is a mobile gas chromatography-mass spectrometry instrument
University of Louisville Superfund Research Program
December 2023

Researchers at the University of Louisville Superfund Research Program (SRP) Center have gained new insights into levels of volatile organic compounds (VOCs) in the environment using the Multichannel Organics In-situ enviRonmental Analyzer (MOIRA) instrument.

Shaikh performing x-ray absorption spectroscopy with equipment
University of New Mexico & University of Iowa: Electrospun Polymers for Uranium Detection
September 2023

Researchers at the University of New Mexico and University of Iowa Superfund Research Program (SRP) centers created an improved electrospun nanofiber technology to detect uranium in contaminated water.

Example of a tube sampler after one month in the field compared to a clean, laboratory-deployed tube sampler.
University of Rhode Island Research: PFAS Passive Sampling Device
June 2023

Researchers at the University of Rhode Island SRP Center, led by Rainer Lohmann, Ph.D., developed a passive sampling device to monitor per- and polyfluoroalkyl substances (PFAS) in wastewater treatment plant effluent, as well as in groundwater and rivers.

RAPIMER schmatic showing artificial plant nanomaterial, fungus, and chemicals.
Texas A&M AgriLife Research: Plant-based PFAS remediation
March 2023

Scientists at Texas A&M AgriLife Research developed a novel technology that can efficiently bind to and break down per- and polyfluoroalkyl substances (PFAS) in the environment. Their approach combines a plant-based material that adsorbs PFAS and a fungus that can take up the chemicals.

Mayor of Newburyport, MA with CycloPure team.
CycloPure, Inc.: Detection and removal of per- and polyfluoroalkyl substances (PAFS) from water
December 2022

CycloPure, Inc. has adapted their SRP-funded technology, DEXSORB+, into several products to detect and remove per- and polyfluoroalkyl substances (PAFS) from water. DEXSORB+ uses cup-shaped cyclodextrins, sugar molecules bound together into rings, to bind and remove PFAS.

Image of the sensor
Quantitative BioSciences, Inc.: Customizable continuous water monitoring
September 2022

Quantitative BioSciences, Inc., has developed a customizable sensor to continuously monitor water for arsenic, mercury, and cadmium, among other contaminants. A Business Innovation Research Grant from the NIEHS Superfund Research Program supported early work on the device.

Activated carbon pellets applied in the field
RemBac Environmental, LLC: Inoculated activated carbon pellets
June 2022

NIEHS Superfund Research Program-funded small business RemBac Environmental, LLC., developed a remediation technology to treat sediments contaminated with polychlorinated biphenyls (PCBs). The technology uses activated carbon pellets containing microorganisms to degrade PCBs in sediments.

Meichen Wang working at a computer in a lab
Texas A&M: Edible therapeutic sorbent technology
March 2022

Timothy Phillips, Ph.D., and team at the Texas A&M University SRP Center developed therapeutic sorbent technology to reduce the ability of hazardous chemicals to harm the body. These edible sorbents decrease exposures by binding to chemicals, like per- and polyfluoroalkyl substances (PFAS), in the intestines.

graphic demonstrating nautral bioremediation being enhanced by solar energy to be faster, deeper, and more air-tolerant
UC Riverside & UC Los Angeles: Solar-powered material-microbe interface for PFAS
December 2021

Researchers at the University of California (UC), Riverside and UC Los Angeles are exploring how nanomaterials powered by solar electricity can accelerate the activity of bacteria used to clean up halogenated contaminants such as chlorinated solvents, per- and polyfluoroalkyl substances (PFAS), and 1,4-dioxane in groundwater.

TMVI display maps
Texas A&M, UC San Diego, & Brown: Toxics Mobility Vulnerability Index
September 2021

Researchers from the Texas A&M University (TAMU), Brown University, and University of California (UC) San Diego SRP Centers developed an online interactive dashboard, called the Toxics Mobility Vulnerability Index (TMVI). Their objective was to display how land use, such as green space or industrial land, interacts with extreme weather and sociodemographic characteristics to affect public health.

Graph of components x y and z
Microbial Insights: Workflow for chlorinated compound biodegradation
June 2021

Researchers at SRP-funded small business Microbial Insights use highly sensitive instruments to analyze metabolites, small molecules that result from different chemical and biological processes. Their goal is to provide key insights on site-specific conditions that affect the ability of bacteria to break down harmful contaminants in the environment.

Bluegrass Advanced Materials flocculants
Bluegrass Advanced Materials: Smart temperature-responsive flocculants for PFAS
March 2021

SRP-funded small business Bluegrass Advanced Materials developed smart temperature responsive copolymer flocculants to remove persistent water-soluble contaminants, such as per- and polyfluoroalkyl substance (PFAS), from water. The technology separates solids and liquids by forming flocs, larger aggregations of particles that can more easily be removed from water.

to Top