Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

COVID-19 is an emerging, rapidly evolving situation.

Get the latest public health information from CDC: https://www.coronavirus.gov

Get the latest research information from NIH: https://www.nih.gov/coronavirus

Your Environment. Your Health.

Dataset Details

Superfund Research Program

Title: Super-Enhancer-mediated Control of Liver Fibrosis by BET Bromodomain Proteins

Accession Number: SRP043435

Link to Dataset: https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP043435

Repository: Sequence Read Archive (SRA)

Data Type(s): Nucleotide Sequence

Organism(s): Homo sapiens

Summary: Here, we investigate the role of enhancers in myofibroblasts, a cell type that dominates the pathogenesis and progression of tissue fibrosis. We reveal that bromodomain and extra-terminal family members (BETs), an important group of epigenetic readers, are critical for super-enhancer-mediated pro-fibrotic gene expression in hepatic stellate cells (HSCs, lipid-containing liver-specific pericytes), upon activation during liver fibrogenesis give rise to myofibroblasts2-4. We observe significantly enriched localization of BETs to hundreds of super-enhancers associated with genes involved in multiple pro-fibrotic pathways. This unique loading pattern consequentially serves as a molecular mechanism by which BETs modulate pro-fibrotic gene expression in myofibroblasts. Strikingly, suppression of BET-enhancer interaction using small-molecule inhibitors such as JQ1 dramatically blocks activation of HSCs into myofibroblasts and significantly compromises the proliferation of activated HSCs. Overall design: Identification of BRD2, BRD3, BRD4, PolII, PolIIs2p and PolIIs5p binding sites in human stellate LX2 cells that were treated with DMSO (0.1 ) or JQ1 (500nM) for 16 hrs.

Publication(s) associated with this dataset: Project(s) associated with this dataset:
Back
to Top