Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

COVID-19 is an emerging, rapidly evolving situation.

Get the latest public health information from CDC: https://www.coronavirus.gov

Get the latest research information from NIH: https://www.nih.gov/coronavirus

Your Environment. Your Health.

Dartmouth College

Superfund Research Program

Mechanism of Arsenic-Induced Vascular Disease

Project Leader: Aaron Barchowsky (University of Pittsburgh)
Grant Number: P42ES007373
Funding Period: 2000-2005

Learn More About the Grantee

Visit the grantee's eNewsletter page Visit the grantee's eNewsletter page Visit the grantee's Twitter page Visit the grantee's Facebook page Visit the grantee's Video page

Project Summary (2000-2005)

The primary objective of this project is to define the cellular and molecular mechanisms responsible for changes in vascular cell phenotype and proliferation following exposure to low levels of arsenite. These changes promote occlusive cardiovascular disease. The hypothesis is that arsenite causes vascular disease by stimulating oxidant-mediated signaling in endothelial and smooth muscle cells. In addition, the oxidants caused by arsenite exposure may deprive the vasculature of nitric oxide required for vasodilation and suppression of smooth muscle cell proliferation. Previous studies made the distinction between oxidant-sensitive cell regulation and oxidant stress in response to increasing amounts of arsenite. Low, environmentally relevant levels of arsenite and oxidants were shown to be regulatory and proliferative, while high levels activate stress pathways and cell death. Focus is now being placed on the signal cascades that initiate superoxide production by nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase. Dominant negative strategies, with highly expressed adenoviral vectors, will demonstrate the role of the monomeric guanosine triphosphatase (GTPase), Racl (a small GTPase), in initiating this activity and in promoting the activation NF-kB, an oxidant-sensitive transcription factor that promotes expression of cytoprotective genes and cell proliferation. Finally, mice are being chronically exposed to low levels of arsenite to test the hypothesis that arsenite decreases vasodilator-induced nitric oxide release and promotes NF-kB-dependent thickening of brain blood vessels. In vivo electron paramagnetic resonance (epr) spectroscopy and an adenoviral construct that suppresses NF-kB activation are facilitating these studies.

Back
to Top