Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.

Oregon State University

Superfund Research Program

PAHs in Humans at Environmental Levels: Pharmacokinetics, Metabolism and Susceptible Individuals

Project Leader: David E. Williams
Co-Investigator: William M. Baird
Grant Number: P42ES016465
Funding Period: 2013-2019
View this project in the NIH Research Portfolio Online Reporting Tools (RePORT)

Learn More About the Grantee

Visit the grantee's eNewsletter page Visit the grantee's eNewsletter page Visit the grantee's Twitter page Visit the grantee's Facebook page Visit the grantee's Video page

Project Summary (2013-2019)

This project will analyze pharmacokinetics of the prototypical carcinogenic polycyclic aromatic hydrocarbon (PAH), benzo[a]pyrene (BaP) in humans at environmentally relevant exposures. Currently, regulatory agencies, the Agency for Toxic Substances and Disease Registry (ATSDR), and the International Agency for Research on Cancer (lARC) have to rely on high-dose animal studies for predicting safe lifetime exposure levels. The overall hypothesis of this project is that BaP, given to humans at levels encountered in the environment, will exhibit pharmacokinetics predictable from PBPK models constructed in mice. The research team further hypothesizes that the relative potency factor (RPF) for humans exposed to PAH dietary mixtures will be predictive of risk.

The final aim is exploratory and seeks to identify individuals with greater susceptibility based on a common genetic polymorphism. Human volunteers will be administered a dose of [14C]-BaP an order of magnitude lower than the average daily exposure of a U.S. non-smoker. The use of accelerator mass spectrometry (AMS) allows for micro-dosing of both chemical and radioisotope (5 nCi) and still follows blood and urine levels for three days. Use of newly developed AMS technology permits the researchers to access the levels of parent BaP as well as individual metabolites, a major advance that will contribute to risk assessment.

The U.S. Environmental Protection Agency (EPA) is currently considering the use of a relative potency factor (RPF) approach in risk assessment for PAH mixtures. The research team will conduct a study in which 1-3 ounces of smoked salmon containing ten times the BaPeq, based on the RPF of the PAHs in the salmon, will be co-administered with the [14C]- BaP. By examining pharmacokinetics, metabolite profiles and covalent DNA adducts in blood, the researchers can provide the first test ever of the RPF approach in humans and at environmentally relevant levels. Finally, individuals that exhibit distinct BaP metabolite profiles or levels of BaP-DNA adducts will be genotyped for allelic variants of BaP-metabolizing enzymes in an exploratory gene-environment interaction study. These studies are highly innovative and significant and will markedly advance the field of risk assessment by providing a unique and powerful dataset on pharmacokinetic behavior of PAHs in humans exposed at environmental levels.

Back
to Top