Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

COVID-19 is an emerging, rapidly evolving situation.

Get the latest public health information from CDC. Get the latest research information from NIH.

Your Environment. Your Health.

University of Pennsylvania

Superfund Research Program

Animal Models of Mesothelioma

Project Leader: Joseph R. Testa (Fox Chase Cancer Center)
Co-Investigator: Rebecca A. Simmons
Grant Number: P42ES023720
Funding Period: 2014-2020
View this project in the NIH Research Portfolio Online Reporting Tools (RePORT)

Learn More About the Grantee

Visit the grantee's eNewsletter page Visit the grantee's Twitter page Visit the grantee's Facebook page

Project Summary (2014-2020)

Malignant mesothelioma (MM) is a highly aggressive, treatment-unresponsive cancer usually caused by exposure to asbestos such as that found in Ambler, Penn. With estimates of more than 20 million individuals at risk worldwide, new approaches in disease management and prevention are badly needed. The genetic basis for MM has historically focused on somatic mutations of the tumor suppressor genes CDKN2A and NF2 as key alterations influencing initiation and progression. Very recently, the BAP1 ubiquitin carboxy-terminal hydrolase, has been strongly implicated as a major player in MM based on genetic analyses. Germline BAP1 mutations were found in families with a high incidence of MM and other cancers, and somatic BAP1 alterations occurred in MMs, consistent with biallelic inactivation of a tumor suppressor. Moreover, somatic BAP1 mutations are common in sporadic MMs, often in combination with alterations of NF2 and CDKN2A. The genetic and biochemical mechanisms by which BAP1 mutations predispose to MM and how BAP1 interacts genetically with CDKN2A and NF2 to influence MM pathology and therapeutic response are largely unknown. Genetically engineered mouse models can be extremely useful in advancing the understanding of tumor development.

Previous in vivo carcinogenicity studies of crocidolite, asbestos of the amphibole type, have revealed that mouse models with heterozygous mutations (+/mut) of either Nf2 or Cdkn2a exhibit accelerated induction of MM compared to wild-type (+/+) mice. Moreover, crocidolite-exposed mice with mutations of both Nf2 and Cdkn2a (Nf2+/mut;Cdkn2a+/mut) showed further acceleration of MM induction and a more aggressive tumor phenotype, strongly supporting the notion that inactivation of multiple tumor suppressor genes can cooperate to drive MM pathogenesis. However, whether specific epigenetic alterations are also required for MM development is ill-defined. Moreover, whether Nf2+/mut;Cdkn2a+/mut mice are similarly vulnerable to other forms of asbestos, such as tremolite or chrysotile, and whether Bap1+/mut mice are predisposed to the effects of asbestos, are currently unknown. Additionally, whether biological remediation of asbestos abolishes its carcinogenicity in vivo has not been formally tested in such relevant mouse models of MM.

The Testa and Simmons Labs have joined forces to pursue the following Specific Aims:

  1. Use a direct in vivo genetic approach to determine if both Bap1+/mut mice and Nf2+/mut;Cdkn2a+/mut mice are predisposed to the induction of MM by both tremolite and chrysotile.
  2. Use Nf2+/mut;Cdkn2a+/mut mice to ascertain whether remediation of asbestos suppresses its carcinogenic potential.
  3. Identify genome-wide epigenetic modifications resulting in changes in expression, which in turn are associated with MM formation and progression.


The proposed studies by two Co-PIs with complementary expertise in genetics and epigenetics represent a comprehensive approach to yield novel basic insights into asbestos carcinogenicity and mechanisms that drive MM development and dissemination, with translational implications for understanding tumor susceptibility and prevention.

to Top