Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.

Baylor College of Medicine

Superfund Research Program

Streamlined Identification of PAHs/PACs in Environmental Samples Using Ultracompact Spectroscopy Platforms and Machine Learning Strategies

Project Leader: Naomi Halas (Rice University)
Co-Investigators: Reinhard Heckel (Rice University), Peter Nordlander (Rice University)
Grant Number: P42ES027725
Funding Period: 2020-2025

  • Project-Specific Links

Project Summary (2020-2025)

Exposure to polycyclic aromatic hydrocarbons (PAHs) and associated polycyclic aromatic compounds (PACs) has long been identified with a large number of human health risks. PAHs are well-known carcinogens and mutagens. Current analytical techniques for detection of PAHs and PACs are laboratory-based, slow, and complex and require expensive instrumentation and sample preparation. The researchers propose an entirely new approach combining optical spectroscopic techniques, such as Surface Enhanced Raman Spectroscopy (SERS) and Surface Enhanced Infrared Absorption (SEIRA). These techniques can also be combined onto a single nanoengineered substrate designed to sensitively identify specific PACs. While these techniques have been demonstrated successfully using gold- and silver-based nanoparticles and nanoengineered substrates, the researchers propose to expand these techniques using inexpensive and environmentally friendly aluminum nanoengineered substrates for streamlined ultrasensitive PAH and PAC detection. This platform utilizes polydopamine, a biomimetic polymer inspired by mussel adhesive proteins, as coatings for molecular partitioning, selectively extracting and adsorbing PAH and PAC molecules from samples of interest onto the nanosensing substrates. In preliminary results, this approach has yielded sub-ppb detection sensitivities for PAH molecules extracted from liquid samples. Furthermore, the researchers propose to design and demonstrate a new type of chemical detector that can be fully integrated with SERS and/or SEIRA substrates to directly generate an electrical signal in response to the spectrum of the PAH and PAC molecules. This eliminates the need for bulky and expensive monochromators and dispersive optics, ultimately allowing for the design of ultracompact, "on-chip" detectors that can be deployed in the field at Superfund sites and in the clinic. Prototypes of this type of direct spectral detector have recently been demonstrated by the researchers. They are also addressing one of the primary problems universal to analyte detection and analysis, the detection of chemical mixtures likely to be found under actual field sampling conditions, by applying a machine learning approach. They propose to develop machine learning algorithms that automatically analyze the spectra of multicomponent samples, trained to identify with high accuracy and precision their PAH and PAC components. The ultimate outcome of this project is the creation of a streamlined, ultracompact, ultrasensitive chemical analysis and detection platform, capable of identifying multiple PAHs and PACs in a single sample without costly separation and purification steps, which could be readily transitioned to fieldable use.

to Top