Skip Navigation

North Carolina State University

Superfund Research Program

Uncovering Mechanisms of PFAS Adsorption by Granular Activated Carbon to Support PFAS Remediation

Project Leader: Detlef Knappe
Co-Investigator: Morton A. Barlaz
Grant Number: P42ES031009
Funding Period: 2020-2025
View this project in the NIH Research Portfolio Online Reporting Tools (RePORT)

Project-Specific Links

Connect with the Grant Recipients

Visit the grantee's eNewsletter page Visit the grantee's eNewsletter page Visit the grantee's Instagram page Visit the grantee's Facebook page Visit the grantee's Video page

Project Summary (2020-2025)

Per- and polyfluoroalkyl substances (PFAS) are considered contaminants of emerging concern, and remediation of PFAS-impacted sites is a critical and timely public health challenge. Granular activated carbon (GAC) adsorption is the most widely employed PFAS remediation technology. Although much is known about sorption of organic contaminants by GAC, predicting GAC effectiveness from laboratory data or from fundamental pollutant and GAC properties remains a significant challenge. The researchers’ long-term objective is to develop models that predict sorption of organic micropollutants, including PFAS, in GAC treatment systems. A critical barrier to improving existing models is that accessibility of sorption sites inside of GAC particles is not known. An important assumption of current models is that contaminants are uniformly distributed inside of GAC particles at sorption equilibrium. However, direct observations of sorbed contaminants suggest that sorption can occur preferentially near the external sorbent surface. This distinction is significant because it can explain why PFAS sorption capacity increases with decreasing GAC particle size and why laboratory experiments overestimate PFAS removal effectiveness of GAC. The researchers’ overarching hypothesis is, therefore, that sorption of PFAS (as well as many other organic pollutants) occurs preferentially in a shell region near the external GAC surface. The shell adsorption hypothesis is being evaluated by (Aim 1) observing and describing intraparticle PFAS distributions at sorption equilibrium and (Aim 2) quantifying and describing PFAS adsorption/desorption kinetics. Using innovative approaches, such as isotope microscopy, the researchers are beginning to open the "black box" that GAC still represents and directly observe intraparticle PFAS distributions. They are using information from direct observations in conjunction with results from sorption equilibrium and kinetic experiments to explain their data with a shell adsorption model. They expect that model parameters will be physically meaningful and can be predicted from fundamental sorbent and sorbate properties. Results of this project will support development of effective sorbents for PFAS removal, the design of (cost-)effective GAC treatment systems for PFAS remediation, and the evaluation of management options for spent GAC.

to Top