Skip Navigation

Edenspace Systems Corporation

Superfund Research Program

Endophyte Assisted Phytoremediation of Arsenic

Project Leader: Michael J. Blaylock
Grant Number: R43ES025483
Funding Period: Phase I: April 2015 - November 2016
View this project in the NIH Research Portfolio Online Reporting Tools (RePORT)


Agricultural application of arsenate-based pesticides from the 1890s through 1970s left significant arsenic residues, particularly on land used for apple, potato, and blueberry farming. These areas of arsenic contaminated soils are difficult and expensive to remediate via conventional means. An alternative approach is phytoremediation, using living plants to extract and concentrate the element from contaminated soils and waters. The arsenic accumulating EdenfernTM plants have been used commercially to decrease arsenic concentrations at a number of sites. Because the ferns are native to semi-tropical environments, their use in northern or temperate climates is restricted to annual plantings that increase cost.

Endophytic bacteria and fungi that colonize specific plants have been shown to confer tolerance to adverse conditions, improve plant nutrient utilization, increase disease resistance, and facilitate degradation of soil and water contaminants such as trichloroethylene (TCE) and polycyclic aromatic hydrocarbons (PAHs). An understanding of the many benefits conferred by endophytic organisms is still developing and recently the Doty laboratory isolated endophytes from plants growing on arsenic contaminated soils within the Tacoma Smelter Plume in Washington State. These bacterial endophytes have shown an unusual tolerance to arsenic and may provide improved arsenic accumulation in phytoremediation applications.

This project is addressing wide area arsenic contamination through the use of conventional (non-transgenic) endophytes that improve arsenic tolerance and uptake in woody biomass crops such as willow for phytoremediation. The use of novel endophytes isolated from native plants found on arsenic contaminated soils generates a technology approach that will allow a variety of crops and cropping systems to be used for phytoremediation. This Phase I approach is providing a strong basis for Phase II work to provide site managers with an invaluable, low-cost tool for removal of arsenic from contaminated soils.

to Top