Skip Navigation

University of Washington

Superfund Research Program

Arsenic in Shallow Unstratified and Seasonally Stratified Urban Lakes: Mobility, Bioaccumulation and Ecological Toxicity

Project Leader: Rebecca B. Neumann
Co-Investigators: James Gawel, Julian Olden, Alexander Horner-Devine, Evan P. Gallagher
Grant Number: P42ES004696
Funding Period: 2015-2023
View this project in the NIH Research Portfolio Online Reporting Tools (RePORT)

Project-Specific Links

Connect with the Grant Recipients

Visit the grantee's eNewsletter page Visit the grantee's eNewsletter page Visit the grantee's Facebook page Visit the grantee's Video page

Project Summary (2017-2022)

Arsenic, a priority Superfund contaminant, neurotoxin, and carcinogen, is a ubiquitous metalloid contaminant polluting many urban freshwater ecosystems. However, the human health and ecological implications of this contamination are unclear due to an incomplete understanding of arsenic bioavailability in urban waters, which are typically affected by eutrophication. The objective of the project is to quantify spatiotemporal patterns and primary drivers of arsenic mobility, bioavailability and ecological toxicity in urban lakes.

The South-Central Puget Sound Lowland region offers an exceptional environment to study the human and environmental health impacts of urban metal(loid)-impacted freshwater ecosystems because it contains an array of densely populated lakes with arsenic-contaminated waters that display a wide range of redox behaviors: seasonally stratified and anoxic to well-mixed and oxic. Although elevated levels of arsenic usually occur in anoxic waters at the bottom of thermally-stratified lakes during the summer, at least one lake in the study region maintains elevated aqueous arsenic concentrations under oxic conditions. This situation raises questions about the physical and geochemical processes controlling arsenic chemistry in oxic waters of shallow, unstratified lakes, and also about the resulting bioavailability of arsenic to aquatic life, including fish. Due to limitations that anoxia poses for aquatic organisms, the typical coincidence of elevated arsenic and anoxic conditions may act to minimize biological exposure to arsenic, whereas shallow, unstratified lakes may enhance exposure to arsenic contamination.

Within this context, the research team is:

  • Determining the physical and biogeochemical conditions that promote arsenic mobilization from sediments and maintain elevated aqueous concentrations within shallow, unstratified oxic lakes;
  • Identifying the physical and chemical factors that control arsenic bioaccumulation in both stratified and unstratified lakes; and
  • Assessing the ecological toxicity of arsenic within both stratified and unstratified lakes using established and novel molecular biomarkers (identified using RNA-Sequencing technology) indicating arsenic injury.

The researchers hypothesize that arsenic contamination in oxic waters of unstratified lakes is promoted and maintained by inputs of nutrients and organic matter, and that arsenic bioaccumulation and toxicity is enhanced in oxic unstratified lakes compared to seasonally stratified lakes. The team is linking measurements of physical, chemical and biological lake properties with investigations of arsenic bioaccumulation and ecological toxicity. This project is providing information needed to establish effective water quality criteria, develop robust lake management strategies, and foster adoption of biomarker techniques as a way to monitor and assess ecological toxicity of arsenic in aquatic systems.

to Top