Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.

University of California-Berkeley

Superfund Research Program

Nanotechnology-based environmental sensing

Project Leader: Catherine P. Koshland
Co-Investigator: Donald Lucas (Lawrence Berkeley National Laboratory)
Grant Number: P42ES004705
Funding Period: 2006 - 2017

Learn More About the Grantee

Visit the grantee's eNewsletter page Visit the grantee's Twitter page Visit the grantee's Facebook page

Project Summary (2006-2011)

There remains a compelling need for improved ways to detect and quantify toxic and/or hazardous chemical species found at existing or potential Superfund sites. Better analytical techniques could reduce the cost of monitoring, help improve remediation methods, and more accurately assess the health risks associated with hazardous and toxic species. Project investigators have developed methods to produce novel nanoparticles, arrays, and structures that could be used for chemical analysis, and are developing several approaches that combine evolving methods with the characterization and monitoring needs of Superfund. They are linked by their use of small scale properties to develop new methods that should be faster, easier, smaller, and/or less expensive. These technologies could ultimately lead to a number of nanometer-based devices which are portable and robust, and which can be employed at commercial facilities or in-the-field for environmental monitoring. Dr. Koshland's team's goals are to: 1. Develop low-cost sensors and sensor arrays for measuring chemical species such as arsenic and mercury using nanoparticle properties that can be probed optically and electronically. 2. Develop methods to identify biomolecules (specific antibodies/antigens used in bioremediation) by probing their unique local electronic structure using electron tunneling. 3. Investigate the use of new manufactured nanostructured materials for molecular detection, including structures such as carbon nanotubes and coated nanoparticles. This project is divided into four tasks: Gas Phase Detection of Heavy Metals Using Nanoparticle Complexes with Laser Fragmentation Spectroscopy, Mercury Detection with Gold Nanoparticles, Surface Enhanced Raman Spectroscopy Detection of Arsenic Species, and the Detection of Bioremediation Organisms using Electronic Cell Typing. This project is investigating using the different and sometimes unique behavior of materials as their size shrink below 100 nm to develop new methods to detect chemical and biological species found at existing or potential Superfund sites. New sensors could reduce the cost of monitoring, help improve remediation methods, and more accurately assess the health risks associated with hazardous and toxic species.

Back
to Top