Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

COVID-19 is an emerging, rapidly evolving situation.

Get the latest public health information from CDC: https://www.coronavirus.gov

Get the latest research information from NIH: https://www.nih.gov/coronavirus

Your Environment. Your Health.

University of Washington

Superfund Research Program

Gene-Environment Interactions in Salmon Neurotoxicity

Project Leader: Evan P. Gallagher
Grant Number: P42ES004696
Funding Period: 2006-2009

Learn More About the Grantee

Visit the grantee's eNewsletter page Visit the grantee's Twitter page Visit the grantee's Video page

Project Summary (2006-2009)

Pacific salmon populations have declined markedly in the Western United States. Of particular concern is the sublethal neurological injury in salmon exposed to certain pesticides and trace metals. These behavioral impacts include loss of predator detection and prey selection, altered reproductive timing, and loss of homing. The salmon olfactory system is a sensitive target for copper and cadmium-induced peripheral neurotoxicity, and metal-induced oxidative stress may underlie olfactory injury. Neurobehavioral dysfunction similar to that observed for metals has also been demonstrated for anticholinesterase pesticides, and the expression of hepatic biotransformation enzyme isoforms can influence susceptibility to pesticide neurotoxicity. The goal of this new Superfund project is to use molecular, biochemical, and quantitative neurobehaviorial approaches to evaluate the role of hepatic and olfactory biotransformation pathways in susceptibility of coho salmon to neurotoxic injury. Project researchers hypothesize that the balance among phase I (e.g. cytochrome P450s, flavin monooxygenases) and phase II (glutathione S-transferase/oxidative defense) pathways is a key determinant of neurotoxic injury in coho salmon, a model salmonid species of ecological relevance to the Pacific Northwest. Their approach is to initially characterize the high-affinity enzymes responsible for biotransformation of chlorpyrifos and phorate, two organophosphates of particular importance in salmon injury and designated ATSDR Superfund chemicals. GST isoforms that are active in the dealkylation and conjugation of these organophosphates and that protect against oxidative injury are being identified. RNA silencing in coho hepatocytes is being used to evaluate key salmon biotransformation genes that protect against chlorpyrifos injury. The role of oxidative stress in cadmium and copper-induced olfactory injury is being established, and microarray analysis is being used in conjunction with quantitative behavioral studies to functionally link gene expression with metal-induced olfactory injury. Environmental scenarios such as effects of salinity acclimation and co-exposure to metals on chlorpyrifos neurotoxicity is being characterized in vivo, and the effects of residence in a euryhaline Superfund corridor on salmon neurotoxicity is being assessed using robust molecular and biochemical markers developed during the project. It is anticipated that the results of this study will significantly extend understanding of the role of gene-environment interactions in salmon neurotoxicity.

Back
to Top