Skip Navigation

Boston University

Superfund Research Program

Cytochrome P450 in Developmental Toxicity

Project Leader: John J. Stegeman (Woods Hole Oceanographic Institution)
Grant Number: P42ES007381
Funding Period: 2000-2017

Project-Specific Links

Connect with the Grant Recipients

Visit the grantee's Twitter page View the grantee's Factsheet(377KB)

Project Summary (2005-2012)

The long-term goal of this continuing research is to understand the role of cytochrome P450 enzymes in developmental toxicity of environmental chemicals. Such effects are among the most significant concerns in environmental toxicology, and yet a mechanistic understanding is largely absent. Understanding these effects requires explicit knowledge of the CYP involved, given the central role of CYP in the oxidative biotransformation of xenobiotics and many regulatory molecules. At present, there is no animal model for which there is a synoptic view of developmental expression of the full complement of CYP genes. The dual goals of this research are to establish a comprehensive picture of normal and chemically impacted CYP gene expression during development, and to determine the roles of selected CYP in developmental toxicity of prominent environmental chemicals. The major effort involves the zebrafish (Danio rerio) vertebrate model. The initial studies establishes the identities of zebrafish CYP in gene families 1-4 by profile Hidden Markov Models and Bayesian analysis. The expression of all CYP and induction or suppression by chemicals during development, is being determined by quantitative PCR and focused CYP gene microarrays. Expression of nuclear receptors potentially involved in CYP induction is also being examined. Key CYP induced during development will be examined for contribution to toxicity by interfering with their expression in chemically treated embryos. The roles of CYP 1 family genes (CYP1A, CYP1B1, and novel CYPlCs) in toxicity of ortho-polychlorinated biphenyls are being established using receptor knockdown and CYP over-expression. The contribution of these CYP to oxidative stress, a possible common pathway todevelopmental toxicity, is being assessed. CYP regulated by the pregnane x receptor (PXR) is being similarly examined. The environmental relevance of findings in zebrafish is being tested by examining selected homologous genes in the fish species, Fundulus heteroclitus, from a Superfund site highly contaminated by PCBs. These studies are addressing further whether altered expression of CYP that are implicated in toxicity contributes to the resistance to PCB toxicity evolved in these fish. The studies provide a uniquely comprehensive view of CYP in developing zebrafish, pointing to homologues that may be similarly involved in other vertebrate species. The studies provide a lasting foundation essential to current and future assessment of the contribution of CYP to developmental toxicity of chemicals.

to Top